If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+11x-30=0
a = 3; b = 11; c = -30;
Δ = b2-4ac
Δ = 112-4·3·(-30)
Δ = 481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-\sqrt{481}}{2*3}=\frac{-11-\sqrt{481}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+\sqrt{481}}{2*3}=\frac{-11+\sqrt{481}}{6} $
| -6+2(3-6b)=84 | | 2(4w-5)=(-2) | | 25=x(0.6) | | -4x-2=-(1-4x) | | —10(9x+7)-1=7(6+2x)-9 | | -2.5(1-2n)-1.5n=-2.5-3.5n | | 96=3(5n-3) | | -3x^2+16x+35=0 | | 31/2=4x | | 0.7+y+6.3=5 | | 2x÷5=73 | | m-4m+5=0 | | u+12=2u | | -4x+18=-13 | | x^2+15=96 | | x-3-5x=-3x-7+6x | | 1/2x+1/3=4+2/3x | | -15-4z=31 | | 3x+32=0 | | -8(v-7)=4v-4 | | u+49=8u | | 9x+8-3x=-4x-16+x | | (v+5)^2=3v^2+19v+58 | | -4x-43=-7(x+7) | | 7(-3-e)=0 | | 16-5y=25 | | y+y+1=57 | | 2(v-1)=-3v+3 | | 2(6x+8)=100 | | Y+4=y-5*4 | | 9v+3=6(v-1) | | -4x+25=14 |